Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis
نویسندگان
چکیده
The evolutionarily conserved Hop2-Mnd1 complex is a key cofactor for the meiosis-specific recombinase Dmc1. However, emerging evidence has revealed that Hop2-Mnd1 is expressed in somatic tissues, primary human fibroblasts and cell lines, and that it functions in conjunction with the Rad51 recombinase to repair damaged telomeres via the alternate lengthening of telomeres mechanism. Here, we reveal how distinct DNA-binding activities of Hop2-Mnd1 mediate the stabilization of the RAD51-ssDNA presynaptic filament or stimulate the homologous DNA pairing reaction. We have also endeavored to define the interface that governs the assembly of the higher order complex of Hop2-Mnd1 with RAD51. Unexpectedly, we find that ATP enhances the interaction between Hop2-Mnd1 and RAD51, and that both Hop2 and Mnd1 are involved in RAD51 interaction via their C-terminal regions. Importantly, mutations introduced into these Hop2 and Mnd1 domains, including the HOP2 p.del201Glu mutation present in a patient of XX ovarian dysgenesis, diminish the association and functional synergy of Hop2-Mnd1 with both RAD51 and DMC1. Our findings help delineate the intricate manner in which Hop2-Mnd1 engages and functions with RAD51 and DMC1 in mammalian cells and speak to the possible cause of XX ovarian dysgenesis.
منابع مشابه
Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis.
During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The homologous-pairing protein2/meiotic nuclear division protein1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic ...
متن کاملStimulation of fission yeast and mouse Hop2-Mnd1 of the Dmc1 and Rad51 recombinases
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 bin...
متن کاملThe dual role of HOP2 in mammalian meiotic homologous recombination
Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2-MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction...
متن کاملHop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing.
Meiotic recombination between homologous chromosomes ensures their proper segregation at the first division of meiosis and is the main force shaping genetic variation of genomes. The HOP2 and MND1 genes are essential for this recombination: Their disruption results in severe defects in homologous chromosome synapsis and an early-stage failure in meiotic recombination. The mouse Hop2 and Mnd1 pr...
متن کاملHOP2-MND1 modulates RAD51 binding to nucleotides and DNA
The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51. HOP2-MND1 enhances the interaction of RAD51 with nucleotide cofactors and modifies its ...
متن کامل